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Abstract

Using the projection method by Kalinay and Percus [J. Chem. Phys. 122, 204701 (2005)], we derive an effective diffusion coefficient
for narrow channels that generalizes previously reported results. This is, a position-dependant diffusion coefficient for two-dimensional
asymmetric channels under a transverse gravitational external field is obtained. The main result, shown in equation (5), contains the
well-known previous results for symmetric channels with external gravitational force presented by Kalinay [Phys. Rev. E 84, 011118
(2011)], as well as asymmetrical cases where the transverse field goes to zero. Also, found coefficient can be approximately written as
an interpolation formula as proposed initially by Reguera and Rubi [Phys. Rev. E 64, 061106 (2001)], can be used to recover preceding
results as well. Finally, the excellent agreement of equations (5), (6) and (7) with Brownian dynamics simulations is shown.
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1. Introduction

The diffusion coefficient is a quantity that can be used to describe
transport in a system. For a free system, it is customary to use a
diffusion constant (D0). Once confinement or external field in-
fluence is imposed, it is needed to extend the model by using the
effective diffusive coefficient (Deff or D(x)) that, in this case,
depends on the x-coordinate. Second Fick’s law provides us [1]
with a basic description of free systems but Fick-Jacobs [2] and
even better, Fick-Jacobs-Zwanzig [3] equations improve the mod-
els. Later Reguera and Rubi proposed [4] a new heuristically-
found coefficient enhancing Zwanzig’s result. Kalinay and Per-
cus used their method [5], named projection method [6] to make
an even better description of diffusive systems. The last proce-
dure was used by Kalinay himself [7] to describe a symmetrical
channel under transverse gravitational force.

2. Projection Method

A brief outline of the projection method can be stated as follows.
We write the bidimentional Smoluchowski equation [8]
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choosing for this particular case a gravitational-like potential
U(y) = Gy, where g ≡ βG. Now the one-dimentional density is
calculated by taking the integral of the particle density ρ(x, y, t)

c(x, t) =

∫ h2(x)

h1(x)

ρ(x, y, t) dy. (2)

This should be done inside the system’s boundaries. The next
step is to obtain an equilibrium solution for density by assum-

ing Dy → ∞, this is a transverse-directional equilibrium. This
solution can be easily written as

ρ0(x, y, t) =
1

A(x)
e−gyc(x, t), (3)

where A(x) is a normalization function that contains boundaries
and potential information encoded inside. Now we can see ρ as
the result of a perturbative series in ε ≡ Dx/Dy
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, (4)

applying the usual techniques for series solutions and the key as-
sumption of a stationary regime for long times (∂tc(x, t)) we can
found D(x).

3. Results

The known results for two-dimensional narrow channels
could be generalized by
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(5)

and approximately written using an interpolation formula
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(7)

Above equations contains the channel width w(x) = h2(x) −
h1(x), the midline y0(x) = [h1(x) + h2(x)] /2 and their re-
spective derivatives.

4. Brownian Dynamics Simulations

Simulations where performed using Fortran & C codes, par-
alellizing the exection of the programs. All realizations were
made with ∆t = 10−6, 107 steps and 2.5 × 104 particles.
The probe channels has a period of L = 1. First simula-
tion round was conducted with channel boundaries’ defined by
h2(x) = [sin(2πx) + 1.02] /(2π) = −h1(x) and a G mag-
nitude transversal force. Following simulations were completed
changing the lower boundary to be h1(x) = 0 and transversal
constant force in two different directions +G and −G.
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Figure 1: Effective diffusion coefficients obtained numerically in
Ref. [9] (continuous red line), those predicted by equation (5)
(continuous black line), and the interpolation formula given by
equations (6) and (7) (dashed blue line), are compared with the
values obtained by Brownian dynamics simulations (square red
symbols). The boundaries of the channel are defined by the di-
mensionless function h2(x) = −h1(x) = [sin(2πx)+1.02]/2π,
subjected to a constant perpendicularG force. L gives the period-
icity of the channel [9]. In the inset the straight midline is shown
as a red dotted line.

5. Conclusions

The newly obtained Eq. (5) allows us to recover the Kalinay
results [7] by considering a symmetric channel with zero midline.
Reguera and Rubi expression [4] arises when the transversal force
is null. Also, Bradley model [10] can be gathered if the asymme-
try of the system is maintained but the transverse external field is

removed. Some interesting behavior is predicted for the diffusion
coefficient by setting G → −∞,+∞, where D0/

[
1 + h′22 (x)

]
and D0/

[
1 + h′21 (x)

]
respectively, this can be promising in or-

der to achieve particle separation and diffusion coefficient control
at will by turning on and off the external field or tuning its mag-
nitude.

Also, it is remarkable how Eq. (5) can be recovered by taking
the first two terms of the series obtained from Eqs. (6) and (7) as
Reguera and Rubi [4], and Kalinay [7] proposed. Furthermore,
the asymmetry and boundaries information of the system can be
encoded into the η exponent.

The Brownian dynamics simulations and Eqns. (5), (6), and
(7) are in excellent agreement. Additionally, the symmetrical
case was compared to the predicted behavior found by another
methods as shown in Ref. [9].
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Figure 2: Effective diffusion coefficients predicted by equation
(5) (continuous black line), and the interpolation formula given
by equations (6) and (7) (dashed blue line), are compared with the
values obtained by Brownian dynamics simulations (red square
and triangle symbols). The boundaries of the channel are defined
by the dimensionless function h2(x) = [sin(2πx) + 1.02]/2π
and h1(x) = 0, subjected to a constant perpendicular G force.
L gives the periodicity of the channel [9]. In the inset the curved
midline is shown as a red dotted line.
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